Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.231
Filtrar
1.
Sci Rep ; 14(1): 7755, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565929

RESUMO

Cellulose-degrading microorganisms hold immense significance in utilizing cellulose resources efficiently. The screening of natural cellulase bacteria and the optimization of fermentation conditions are the hot spots of research. This study meticulously screened cellulose-degrading bacteria from mixed soil samples adopting a multi-step approach, encompassing preliminary culture medium screening, Congo red medium-based re-screening, and quantification of cellulase activity across various strains. Particularly, three robust cellulase-producing strains were identified: A24 (MT740356.1 Brevibacillus borstelensis), A49 (MT740358.1 Bacillus cereus), and A61 (MT740357.1 Paenibacillus sp.). For subsequent cultivation experiments, the growth curves of the three obtained isolates were monitored diligently. Additionally, optimal CMCase production conditions were determined, keeping CMCase activity as a key metric, through a series of single-factor experiments: agitation speed, cultivation temperature, unit medium concentration, and inoculum volume. Maximum CMCase production was observed at 150 rpm/37 °C, doubling the unit medium addition, and a 5 mL inoculation volume. Further optimization was conducted using the selected isolate A49 employing response surface methodology. The software model recommended a 2.21fold unit medium addition, 36.11 °C temperature, and 4.91 mL inoculant volume for optimal CMCase production. Consequently, three parallel experiments were conducted based on predicted conditions consistently yielding an average CMCase production activity of 15.63 U/mL, closely aligning with the predicted value of 16.41 U/mL. These findings validated the reliability of the model and demonstrated the effectiveness of optimized CMCase production conditions for isolate A49.


Assuntos
Celulase , Paenibacillus , Bacillus cereus/metabolismo , Celulose/metabolismo , Reprodutibilidade dos Testes , Celulase/metabolismo , Paenibacillus/metabolismo , Fermentação
2.
Appl Microbiol Biotechnol ; 108(1): 282, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573330

RESUMO

Oleanane-type ginsenosides are a class of compounds with remarkable pharmacological activities. However, the lack of effective preparation methods for specific rare ginsenosides has hindered the exploration of their pharmacological properties. In this study, a novel glycoside hydrolase PlGH3 was cloned from Paenibacillus lactis 154 and heterologous expressed in Escherichia coli. Sequence analysis revealed that PlGH3 consists of 749 amino acids with a molecular weight of 89.5 kDa, exhibiting the characteristic features of the glycoside hydrolase 3 family. The enzymatic characterization results of PlGH3 showed that the optimal reaction pH and temperature was 8 and 50 °C by using p-nitrophenyl-ß-D-glucopyranoside as a substrate, respectively. The Km and kcat values towards ginsenoside Ro were 79.59 ± 3.42 µM and 18.52 s-1, respectively. PlGH3 exhibits a highly specific activity on hydrolyzing the 28-O-ß-D-glucopyranosyl ester bond of oleanane-type saponins. The mechanism of hydrolysis specificity was then presumably elucidated through molecular docking. Eventually, four kinds of rare oleanane-type ginsenosides (calenduloside E, pseudoginsenoside RP1, zingibroside R1, and tarasaponin VI) were successfully prepared by biotransforming total saponins extracted from Panax japonicus. This study contributes to understanding the mechanism of enzymatic hydrolysis of the GH3 family and provides a practical route for the preparation of rare oleanane-type ginsenosides through biotransformation. KEY POINTS: • The glucose at C-28 in oleanane-type saponins can be directionally hydrolyzed. • Mechanisms to interpret PlGH3 substrate specificity by molecular docking. • Case of preparation of low-sugar alternative saponins by directed hydrolysis.


Assuntos
Ginsenosídeos , Ácido Oleanólico/análogos & derivados , Paenibacillus , Saponinas , Glicosídeo Hidrolases/genética , Simulação de Acoplamento Molecular , Escherichia coli/genética , Ésteres
3.
Artigo em Inglês | MEDLINE | ID: mdl-38607368

RESUMO

Two Gram-positive, rod-shaped, endospore-forming strains, YIM B05601 and YIM B05602T, were isolated from soil sampled at Hamazui hot spring, Tengchong City, Yunnan Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the two strains fell within the genus Paenibacillus, appearing most closely related to Paenibacillus alkalitolerans YIM B00362T (96.9 % sequence similarity). Genome-based phylogenetic analysis confirmed that strains YIM B05601 and YIM B05602T formed a distinct phylogenetic cluster within the genus Paenibacillus. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strains YIM B05601 and YIM B05602T with the related species P. alkalitolerans YIM B00362T were within the ranges of 74.43-74.57 % and 12.1-18.5 %, respectively, which clearly indicated that strains YIM B05601, YIM B05602T represented a novel species. Strains YIM B05601 and YIM B05602T exhibited 99.6 % 16S rRNA gene sequence similarity. The ANI and dDDH values between the two strains were 99.8 and 100 %, respectively, suggesting that they belong to the same species. Optimum growth for both strains occurred at pH 7.0 and 45 °C. The diagnostic diamino acid in the cell-wall peptidoglycan of strains YIM B05601 and YIM B05602T was meso-diaminopimelic acid. MK-7 was the predominant menaquinone. The polar lipids of strain YIM B05602T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, four unidentified glycolipids, an unidentified polarlipid and phosphatidylinositol mannoside. The major fatty acids of the two stains were iso-C15 : 0 and anteiso-C15 : 0. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizations, strains YIM B05601 and YIM B05602T could be classified as a novel species of the genus Paenibacillus, for which the name Paenibacillus thermotolerans sp. nov. is proposed. The type strain is YIM B05602T (=CGMCC 1.60051T=KCTC 43460T=NBRC 115924T).


Assuntos
Fontes Termais , Paenibacillus , China , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Nucleotídeos , Paenibacillus/genética
4.
Microb Biotechnol ; 17(3): e14438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529712

RESUMO

Paenibacillus polymyxa is a non-pathogenic, Gram-positive bacterium endowed with a rich and versatile metabolism. However interesting, this bacterium has been seldom used for bioproduction thus far. In this study, we engineered P. polymyxa for isobutanol production, a relevant bulk chemical and next-generation biofuel. A CRISPR-Cas9-based genome editing tool facilitated the chromosomal integration of a synthetic operon to establish isobutanol production. The 2,3-butanediol biosynthesis pathway, leading to the main fermentation product of P. polymyxa, was eliminated. A mutant strain harbouring the synthetic isobutanol operon (kdcA from Lactococcus lactis, and the native ilvC, ilvD and adh genes) produced 1 g L-1 isobutanol under microaerobic conditions. Improving NADPH regeneration by overexpression of the malic enzyme subsequently increased the product titre by 50%. Network-wide proteomics provided insights into responses of P. polymyxa to isobutanol and revealed a significant metabolic shift caused by alcohol production. Glucose-6-phosphate 1-dehydrogenase, the key enzyme in the pentose phosphate pathway, was identified as a bottleneck that hindered efficient NADPH regeneration through this pathway. Furthermore, we conducted culture optimization towards cultivating P. polymyxa in a synthetic minimal medium. We identified biotin (B7), pantothenate (B5) and folate (B9) to be mutual essential vitamins for P. polymyxa. Our rational metabolic engineering of P. polymyxa for the production of a heterologous chemical sheds light on the metabolism of this bacterium towards further biotechnological exploitation.


Assuntos
Butanóis , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Paenibacillus polymyxa/metabolismo , Carbono/metabolismo , NADP/metabolismo , Oxirredução , Paenibacillus/genética , Engenharia Metabólica
5.
BMC Genomics ; 25(1): 276, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481158

RESUMO

BACKGROUND: Plant diseases caused by pathogenic fungi are devastating. However, commonly used fungicides are harmful to the environment, and some are becoming ineffective due to fungal resistance. Therefore, eco-friendly biological methods to control pathogenic fungi are urgently needed. RESULTS: In this study, a strain, Paenibacillus sp. lzh-N1, that could inhibit the growth of the pathogenic fungus Mycosphaerella sentina (Fr) Schrorter was isolated from the rhizosphere soil of pear trees, and the complete genome sequence of the strain was obtained, annotated, and analyzed to reveal the genetic foundation of its antagonistic ability. The entire genome of this strain contained a circular chromosome of 5,641,488 bp with a GC content of 45.50%. The results of species identification show that the strain belongs to the same species as P. polymyxa Sb3-1 and P. polymyxa CJX518. Sixteen secondary metabolic biosynthetic gene clusters were predicted by antiSMASH, including those of the antifungal peptides fusaricidin B and paenilarvins. In addition, biofilm formation-related genes containing two potential gene clusters for cyclic lactone autoinducer, a gene encoding S-ribosylhomocysteine lyase (LuxS), and three genes encoding exopolysaccharide biosynthesis protein were identified. CONCLUSIONS: Antifungal peptides and glucanase biosynthesized by Paenibacillus sp. lzh-N1 may be responsible for its antagonistic effect. Moreover, quorum sensing systems may influence the biocontrol activity of this strain directly or indirectly.


Assuntos
Paenibacillus , Paenibacillus/genética , Antifúngicos/química , Percepção de Quorum , Genoma Bacteriano
6.
Int J Biol Macromol ; 264(Pt 2): 130753, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462094

RESUMO

Chitooligosaccharides (COS) possess versatile functional properties that have found extensive applications across various fields. Chitosanase can specifically hydrolyze ß-1,4 glycosidic bonds in chitosan to produce COS. In this study, Csn-PD, a glycoside hydrolase family 46 chitosanase from Paenibacillus dendritiformis, which produces (GlcN)2 as its main product, was rationally redesigned aiming to improve its catalytic performance. Based on the results of molecular docking analysis and multiple sequence alignment, four amino acid residues in Csn-PD (I101, T120, T220, and Y259) were pinpointed for targeted mutations. Beneficial mutations in terms of enhanced catalytic activity were then combined by site-directed mutagenesis. Notably, the most promising variant, Csn-PDT6 (Csn-PD I101M/T120E/T220G), exhibited an impressive eight-fold surge in activity compared to the wild-type Csn-PD. This heightened enzymatic activity was complemented by an enhanced pH stability profile. A compelling feature of Csn-PDT6 is its preservation of the hydrolytic product profile observed in Csn-PD. This characteristic further accentuates its candidacy for the targeted production of (GlcN)2. The success of our strategic approach is vividly illustrated by the significant improvements achieved in the catalytic performance of the chitosanase, encompassing both its activity and stability. These developments offer a valuable model that may have implications for the semi-rational design of other enzymes.


Assuntos
Quitosana , Paenibacillus , Simulação de Acoplamento Molecular , Glicosídeo Hidrolases/química , Quitosana/química , Hidrólise
7.
Chembiochem ; 25(8): e202400010, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38439711

RESUMO

A plethora of di- and oligosaccharides isolated from the natural sources are used in food and pharmaceutical industry. An enzymatic hydrolysis of fungal cell wall ß-glucans is a good alternative to produce the desired oligosaccharides with different functionalities, such as the flavour enhancer gentiobiose. We have previously identified PsGly30A as a potential yeast cell wall degrading ß-1,6-glycosidase. The aim of this study is to characterise the PsGly30A enzyme, a member of the GH30 family, and to evaluate its suitability for the production of gentiobiose from ß-1,6-glucans. An endo-ß-1,6-glucanase PsGly30A encoding gene from Paenibacillus sp. GKG has been cloned and overexpressed in Escherichia coli. The recombinant enzyme has been active towards pustulan and yeast ß-glucan, but not on laminarin from the Laminaria digitata, confirming the endo-ß-1,6-glucanase mode of action. The PsGly30A shows the highest activity at pH 5.5 and 50 °C. The specific activity of PsGly30A on pustulan (1262±82 U/mg) is among the highest reported for GH30 ß-1,6-glycosidases. Moreover, gentiobiose is the major reaction product when pustulan, yeast ß-glucan or yeast cell walls have been used as a substrate. Therefore, PsGly30A is a promising catalyst for valorisation of the yeast-related by-products.


Assuntos
Dissacarídeos , 60578 , Laminaria , Paenibacillus , beta-Glucanas , Saccharomyces cerevisiae/metabolismo , Concentração de Íons de Hidrogênio , Glucanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Especificidade por Substrato
8.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38509027

RESUMO

AIMS: In this work, we aimed to isolate marine bacteria that produce metabolites with antifungal properties. METHODS AND RESULTS: Paenibacillus polymyxa 188 was isolated from a marine sediment sample, and it showed excellent antifungal activity against many fungi pathogenic to plants (Fusarium tricinctum, Pestalotiopsis clavispora, Fusarium oxysporum, F. oxysporum f. sp. Cubense (Foc), Curvularia plantarum, and Talaromyces pinophilus) and to humans (Aspergillus terreus, Penicillium oxalicum, and Microsphaeropsis arundinis). The antifungal compounds produced by P. polymyxa 188 were extracted and analyzed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The complete genome sequence and biosynthetic gene clusters of P. polymyxa 188 were characterized and compared with those of other strains. A total of 238 carbohydrate-active enzymes (CAZymes) were identified in P. polymyxa 188. Two antibiotic gene clusters, fusaricidin and tridecaptin, exist in P. polymyxa 188, which is different from other strains that typically have multiple antibiotic gene clusters. CONCLUSIONS: Paenibacilluspolymyxa 188 was identified with numerous biosynthetic gene clusters, and its antifungal ability against pathogenic fungi was verified.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Humanos , Paenibacillus polymyxa/metabolismo , Antifúngicos/química , Antibacterianos/metabolismo , Paenibacillus/genética
9.
Int J Mol Sci ; 25(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38396880

RESUMO

Screening of Bacillus with antagonistic effects on paddy mold pathogens to provide strain resources for biological control of mold in Oryza sativa L. screening of Bacillus isolates antagonistic towards Aspergillus tubingensis from rhizosphere soil of healthy paddy; classification and identification of antagonistic strains by biological characteristics and 16S rDNA sequence analysis; transcriptome sequencing after RNA extraction from Bacillus-treated Aspergillus tubingensis; and extraction of inhibitory crude proteins of Bacillus by ammonium sulfate precipitation; inhibitory crude protein and Bacillus spp. were treated separately for A. tubingensis and observed by scanning electron microscopy (SEM). An antagonistic strain of Bacillus, named B7, was identified as Paenibacillus polymyxa by 16S rDNA identification and phylogenetic evolutionary tree comparison analysis. Analysis of the transcriptome results showed that genes related to secondary metabolite biosynthesis such as antifungal protein were significantly downregulated. SEM results showed that the mycelium of A. tubingensis underwent severe rupture after treatment with P. polymyxa and antifungal proteins, respectively. In addition, the sporocarp changed less after treatment with P. polymyxa, and the sporangium stalks had obvious folds. P. polymyxa B7 has a good antagonistic effect against A. tubingensis and has potential for biocontrol applications of paddy mold pathogens.


Assuntos
Aspergillus , Bacillus , Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Antifúngicos/farmacologia , Filogenia , Antibiose , Bacillus/genética , DNA Ribossômico/genética , Paenibacillus/genética
10.
Plant Cell Rep ; 43(2): 49, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302760

RESUMO

KEY MESSAGE: Paenibacillus lentimorbus reprograms auxin signaling and metabolic pathways for modulating root system architecture to mitigate nutrient deficiency in maize crops. The arable land across the world is having deficiency and disproportionate nutrients, limiting crop productivity. In this study, the potential of plant growth-promoting rhizobacteria (PGPR) viz., Pseudomonas putida, Paenibacillus lentimorbus, and their consortium was explored for growth promotion in maize (Zea mays) under nutrient-deficient conditions. PGPR inoculation improved the overall health of plants under nutrient-deficient conditions. The PGPR inoculation significantly improved the root system architecture and also induced changes in root cortical aerenchyma. Based on plant growth and physiological parameters inoculation with P. lentimorbus performed better as compared to P. putida, consortium, and uninoculated control. Furthermore, expression of auxin signaling (rum1, rul1, lrp1, rtcs, rtcl) and root hair development (rth)-related genes modulated the root development process to improve nutrient acquisition and tolerance to nutrient-deficient conditions in P. lentimorbus inoculated maize plants. Further, GC-MS analysis indicated the involvement of metabolites including carbohydrates and organic acids due to the interaction between maize roots and P. lentimorbus under nutrient-deficient conditions. These findings affirm that P. lentimorbus enhance overall plant growth by modulating the root system of maize to provide better tolerance to nutrient-deficient condition.


Assuntos
Bacillus , Paenibacillus , Zea mays , Zea mays/genética , Redes e Vias Metabólicas , Nutrientes , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-38334269

RESUMO

A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).


Assuntos
Paenibacillus , Presbytini , Animais , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , China , Ecossistema
12.
Biosci Biotechnol Biochem ; 88(5): 538-545, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38331414

RESUMO

Bacterial α-1,3-glucanase, classified as glycoside hydrolase (GH) family 87, has been divided into 3 subgroups based on differences in gene sequences in the catalytic domain. The enzymatic properties of subgroups 1 and 3 of several bacteria have been previously investigated and reported; however, the chemical characterization of subgroup 2 enzymes has not been previously conducted. The α-1,3-glucanase gene from Paenibacillus alginolyticus NBRC15375 (PaAgl) belonging to subgroup 2 of GH family 87 was cloned and expressed in Escherichia coli. PgAgl-N1 (subgroup 3) and PgAgl-N2 (subgroup 1) from P. glycanilyticus NBRC16188 were expressed in E. coli, and their enzymatic characteristics were compared. The amino acid sequence of PaAgl demonstrated that the homology was significantly lower in other subgroups when only the catalytic domain was compared. The oligosaccharide products of the mutan-degrading reaction seemed to have different characteristics among subgroups 1, 2, and 3 in GH family 87.


Assuntos
Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli , Expressão Gênica , Glicosídeo Hidrolases , Paenibacillus , Paenibacillus/enzimologia , Paenibacillus/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Escherichia coli/genética , Especificidade por Substrato , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Oligossacarídeos/metabolismo
13.
Antonie Van Leeuwenhoek ; 117(1): 32, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329631

RESUMO

A Gram-stain-positive, facultatively anaerobic, rod-shaped bacterium, designated JX-17T, was isolated from a soil sample collected in Jiangxi Province, PR China. Growth was observed at 15-48 °C (optimum 37 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-6.0% (w/v) NaCl (optimum 1.0%). Strain JX-17T could degrade approximately 50% of 50 mg/L mesotrione within 2 days of incubation, but could not use mesotrione as sole carbon source for growth. Strain JX-17T showed less than 95.3% 16S rRNA gene sequence similarity with type strains of the genus Paenibacillus. In the phylogenetic tree based on 16S rRNA gene and genome sequences, strain JX-17T formed a distinct lineage within the genus Paenibacillus. The ANI values between JX-17T and the most closely related type strains P. lentus CMG1240T and P. farraposensis UY79T were 70.1% and 71.4%, respectively, and the dDDH values between them were 19.0% and 23.3%, respectively. The major cellular fatty acids were anteiso-C15:0, iso-C16:0, anteiso-C17:0 and C16:0, the predominant respiratory quinone was MK-7, the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid, an aminophospholipid and a phosphatidylinositol. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid, and the DNA G + C content was 50.1 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain JX-17T represents a novel species within the genus Paenibacillus, for which the name Paenibacillus lacisoli sp. nov is proposed, with strain JX-17T (= GDMCC 1.3962T = KCTC 43568T) as the type strain.


Assuntos
Cicloexanonas , Paenibacillus , Fosfolipídeos , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , DNA Bacteriano/química , Hibridização de Ácido Nucleico , Ácidos Graxos/análise , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
14.
Artigo em Inglês | MEDLINE | ID: mdl-38305710

RESUMO

A Gram-stain-positive bacterium capable of resisting 5.0 mM glufosinate, designated strain YX-27T, was isolated from a sludge sample collected from a factory in Wuxi, Jiangsu, PR China. Cells were rod-shaped, facultatively anaerobic, endospore-forming, and motile by peritrichous flagella. Growth was observed at 15-42 °C (optimum at 30 °C), pH 4.0-8.0 (optimum pH 7.0-7.5) and with 0-2.5% NaCl (w/v; optimum, 0.5 %). Strain YX-27T could tolerate up to 6.0 mM glufosinate. Strain YX-27T showed the highest 16S rRNA gene sequence similarity to Paenibacillus tianjinensis TB2019T (96.17 %), followed by Paenibacillus odorifer DSM 1539T (96.15 %), Paenibacillus sophorae S27T (96.04 %), Paenibacillus apii 7124T (96.02 %) and Paenibacillus stellifer DSM 14472T (95.87 %). The phylogenetic tree based on genome and 16S rRNA gene sequences indicated that strain YX-27T was clustered in the genus Paenibacillus but formed a separate clade. The genome size of YX-27T was 5.22 Mb with a G+C content of 57.5 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain YX-27T and 12 closely related type strains ranged from 70.8 to 74.8% and 19.8 to 23.0 %, respectively. The major cellular fatty acids were C16 : 0, anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids were one diphosphatidylglycerol, one phosphatidylethanolamine, one phosphatidylglycerol, one phospholipid, four aminophospholipids and four unidentified lipids. The predominant respiratory quinone was MK-7. Based on phylogenetic, genomic, chemotaxonomic and phenotypic data, strain YX-27T was considered to represent a novel species for which the name Paenibacillus glufosinatiresistens sp. nov. is proposed, with YX-27T (=MCCC 1K08803T= KCTC 43611T) as the type strain.


Assuntos
Aminobutiratos , Ácidos Graxos , Paenibacillus , Ácidos Graxos/química , Esgotos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
15.
Folia Microbiol (Praha) ; 69(2): 415-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180723

RESUMO

Paenibacillus larvae and Melissococcus plutonius represent the most threatening bacterial diseases of honeybee (Apis mellifera)-American and European foulbrood, respectively. For efficient control of those diseases, rapid and accurate detection of the pathogens is crucial. Therefore, we developed a novel multiplex PCR method simultaneously detecting both pathogens. To design and optimize multiplex PCR reaction, four strains of P. larvae representing four ERIC genotypes I-IV (strain DSM 7030-ERIC I, DSM 25430-ERIC II, LMG 16252-ERIC III, DSM 3615-ERIC IV) were selected. Those strains were fully sequenced using long-read sequencing (Sequel I, Pacific Biosciences). For P. larvae, the multicopy insertion sequence IS256 identified in all genotypes of P. larvae was selected to provide high sensitivity. M. plutonius was detected by plasmid pMP1 sequence and the virulence verified by following detection of ETX/MTX2 toxin responsible for pore formation in the cell membrane. As an internal control, a gene encoding for major royal jelly protein 1 specific for honeybees was selected. The method was validated on 36 clinical specimens collected from the colonies suffering from American and European foulbrood in the Czech Republic. Based on the results, sensitivity of PCR was calculated to 93.75% and specificity to 100% for P. larvae diagnosed from hive debris and 100% sensitivity and specificity for honeybee workers and larval scales as well as for diseased brood infected by M. plutonius.


Assuntos
Enterococcaceae , Paenibacillus larvae , Paenibacillus , Abelhas/genética , Animais , Paenibacillus larvae/genética , Elementos de DNA Transponíveis , Larva/microbiologia , Plasmídeos/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Paenibacillus/genética
16.
Appl Microbiol Biotechnol ; 108(1): 17, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38170316

RESUMO

Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/genética , Polimixina B/farmacologia , Polimixina B/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Cálcio/metabolismo , Magnésio , Polimixinas/farmacologia
17.
Int J Biol Macromol ; 261(Pt 1): 129663, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278396

RESUMO

Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Paenibacillus polymyxa/metabolismo , Paenibacillus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Desenvolvimento Vegetal , Plantas/metabolismo
18.
Biosci Biotechnol Biochem ; 88(3): 294-304, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38059852

RESUMO

We have previously isolated the Gram-positive chitin-degrading bacterium Paenibacillus sp. str. FPU-7. This bacterium traps chitin disaccharide (GlcNAc)2 on its cell surface using two homologous solute-binding proteins, NagB1 and NagB2. Bacteria use histidine kinase (HK) of the two-component regulatory system as an extracellular environment sensor. In this study, we found that nagS, which encodes a HK, is located next to the nagB1 gene. Biochemical experiments revealed that the NagS sensor domain (NagS30-294) interacts with the NagB1-(GlcNAc)2 complex. However, proof of NagS30-294 interacting with NagB1 without (GlcNAc)2 is currently unavailable. In contrast to NagB1, no complex formation was observed between NagS30-294 and NagB2, even in the presence of (GlcNAc)2. The NagS30-294 crystal structure at 1.8 Å resolution suggested that the canonical tandem-Per-Arnt-Sim fold recognizes the NagB1-(GlcNAc)2 complex. This study provides insight into the recognition of chitin oligosaccharides by bacteria.


Assuntos
Proteínas de Transporte , Paenibacillus , Histidina Quinase/genética , Histidina Quinase/metabolismo , Oligossacarídeos/química , Quitina/metabolismo
19.
Microbiol Spectr ; 12(1): e0229323, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38054717

RESUMO

IMPORTANCE: Polymyxins are considered the last line of defense against multidrug-resistant bacteria. The regulatory mechanism of polymyxin synthesis is poorly studied in Paenibacillus polymyxa. In this study, we found that Abh and AbrB3 negatively regulated, whereas Spo0A positively regulated polymyxin synthesis in P. polymyxa SC2. In addition, a regulatory relationship between Abh, AbrB3, and Spo0A was revealed, which regulate polymyxin synthesis via multiple regulatory mechanisms in P. polymyxa.


Assuntos
Paenibacillus polymyxa , Paenibacillus , Polimixinas , Paenibacillus polymyxa/genética , Paenibacillus/genética
20.
Arch Biochem Biophys ; 751: 109837, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007074

RESUMO

Reactive oxygen species (ROS) are unstable metabolites produced during cellular respiration that can cause extensive damage to the body. Here we report a unique structural metalloprotein called RSAPp for the first time, which exhibits robust ROS-scavenging activity, high thermostability, and stress resistance. RSAPp is a previously uncharacterized DUF2935 (domain of unknown function, accession number: cl12705) family protein from Paenibacillus, containing a highly conserved four-helix bundle with binding sites for variable-valence metal ions (Mn2+/Fe2+/Zn2+). Enzymatic characterization results indicated that RSAPp displays the functionality of three different antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). In particular, RSAPp exhibits a significant SOD-like activity that is remarkably effective in eliminating superoxide radicals (up to kcat/KM = 2.27 × 1011 mol-1 s-1), and maintains the catalytical active in a wide range of temperatures (25-100 °C) and pH (pH 2.0-9.0), as well as resistant to high temperature, alkali and acidic pH, and 55 different concentrations of detergent agents, chemical solvents, and inhibitors. These properties make RSAPp an attractive candidate for various industrial applications, including cosmetics, food, and pharmaceuticals.


Assuntos
Metaloproteínas , Paenibacillus , Espécies Reativas de Oxigênio/metabolismo , Paenibacillus/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Catalase/metabolismo , Antioxidantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...